Impact of Holder pasteurization and high-pressure processing on human milk components <u>M. Girard¹</u>, N. Dussault¹, P. Landry¹, M. J. de Grandmont¹, M.-È. Couture¹, M. Cloutier¹, C. Lavigne², L. Thibault¹ ¹Héma-Québec, R&D, Québec, Canada ²Centre de Développement Bioalimentaire du Québec (CDBQ), Sainte-Anne-de-La-Pocatière, Canada

Background

Human milk provides thousands of distinct bioactive molecules that protect babies against infection and inflammation. Human milk also contributes to immune maturation, organ development, and a healthy microbial colonization.¹ However, breastfeeding of preterm babies is sometimes difficult or practically unfeasible. Therefore, human milk from milk banks represents a good alternative, given that this product contains all nutrients needed by preemies for their complete development.²

Given that the health of these babies is rather fragile, donor human milk must be pathogen-free, while keeping an optimal nutritional value. Holder pasteurization, consisting in heating milk to 62.5°C in a water bath, is the most common method for inactivating viruses and bacteria in milk.³ However, pasteurization is inefficient at destructing bacterial spores and is detrimental to the bioactivity of human milk.⁴

Studies have demonstrated that pasteurization by high-pressure processing (HPP), a non-thermal procedure, allows the retention of milk nutritional and immunological properties while mild heating (30-37°C) of the product and repetition of pasteurization cycles destroys bacterial spores.⁵

¹Ballard O et al. Pediatr Clin North Am, 2013; ²Wight, NE et al. J Perinatol, 2001; ³Updegrove K et al. Midwifery Womens Health, 2013; ⁴Koenig A et al. J Hum Lact, 2005; ⁵Demazeau G et al. WO2014064385A1.

Objectives: To determine optimal parameters for HPP treatment of human milk, and to compare the effects of Holder pasteurization and HPP on bacterial load and on nutritional and immunological component retention.

Methods

Optimization of HPP parameters-preliminary <u>data</u>

We have determined that the use of pressures ranging from 300 to 500 MPa for 6 to 15 minutes allows efficient destruction of bacteria while preserving human milk IgA.

HPP assays

Lot #	Pressure (MPa)	Cycle time (min)	HPP cycles	
1-2	330	10	1 to 4	
3-8	425	6	4	

Analysis

Bacterial counts and nutritional values were analysed. Levels of IgA, IgM, lysozyme, lactoferrin, and lipase were determined. IgG, Untreated fresh milk samples and pasteurized milk samples were analysed concomitantly.

Initial milk temperature (°C) 4°C or 37°C 4°C or 37°C

	IABLE 1 : Ba	cterial load	d (CFU/m	L) IN HPP	-treated	and paste	urized br	east milk	samples			
Lots #	Fresh milk	HPP Para 330 MPa / 10 minutes / unheated			rameters 33	ameters 330 MPa / 10 minutes / heated to 37°C			Pasteurized	A) 120 ·]	
	samples	1	2	3	4	1	2	3	4	samples	100	Γ
		cycle	cycles	cycles	cycles	cycle	cycles	cycles	cycles			1
1	N/A*	63.3	23.3	26.7	16.7	20.0	3.3	3.3	0	383.3	uo 60	
2	26 200	3.3	0	0	0	0	0	0	0	26.7	້ວ 40 ·	4
	425 MPa / 6 minutes / 4 cycles										× 20	
			Unhe	eated			Heated	to 37°C			20	1
3	6 950		()			0			3	0	t.
4	37 300		49	93			213			1448		ľ
5	5 816		()			(0		3		1
6	3 683			3				0		0	B)	
7	573			3				0		37	120	-
8	9 025		1	0				3		163	100	L
*N/A: No	t available; CFU	= colony form	ning units.									
120 100 80 60 60 20 0	Unheated 330 K	Heated	Unhea	ted H 425 MPa			Figure trea sam mea cont sam Cal/ mL; n = 2 ed Er Li ed Pr	are 1: Nut ted and p ples. Re ins ± Sl rol (set to ples conta 100 mL; proteins: 2-8.	ritional va basteurize sults are EM of p o 100%) (ained: ene lipids: 3.2 1.2 ± 0	alues of HPP- d breast milk presented as bercentage of Jntreated milk rgy: 64.4 ± 4.2 2 ± 0.4 g/100 0.5 g/100 mL;	 5 60 - 40 - 20 - 0 - 0 - C) 140 - 120 - 140 - 120 - 60 - 40 - 	
Figure 2 in HPF breast presente (means samples µg/mL; IgM: 7.1 levels pasteuriz fresh	2: gA, IgG an P-treated an milk sample d as percent ± SEM). contained: IgA IgG: 20.5 ± 2.5 µg/mL. IgA are signification to breast milk milk samp 1) IgM contor	d IgM con d paster s. Result ages of c Untreated A: 342.1 : ± 2.4 µ gA, IgG, an antly Iowe c samples t oles (*p	ntents urized s are control milk ± 81.4 ug/mL; nd IgM er in chan in <0,05;	140 120 100 80 60 60 40 20						IgA IgC	20 0 Figure lipas samp (mea lysoz	re e ole ins iyn

Heated

330 MPa

heated and HPP-treated samples (425 MPa) than in fresh milk samples (**p<0,001); n= 2-8.

HPP treatment of breast milk appears to be a good alternative to pasteurization. This cold pasteurization method allows a more efficient destruction of sporulating bacteria such as Bacillus cereus, thereby enhancing the quality of breast milk lots available to hospitals. Moreover, a higher retention of nutritional factors, immunoglobulins and lactoferrin is observed in HPP-treated breastmilk samples compared to pasteurized breast milk samples. No significant differences were observed between HPP-treated milk samples and fresh milk samples regarding lysozyme and lipase, suggesting that HPP treatment does not adversely affect these factors. Analysis of residual cytomegalovirus infectivity and levels of some cytokines present in breast milk could provide further information on the comparative analysis of the two human milk pasteurization methods.

Results

Conclusions and Perspectives

425MPa

Heated

Pasteurized

Unheated

/mL, lipase: 28.9 ± 19.1 pg/mL. Levels of lactoferrin are significantly lower in pasteurized breast milk samples than in fresh milk samples (p<0,05); n = 2-8.